
PHYS4070/7270 Worksheet: Week 11
(13/05/2021)

Part A:
Some tips of using std::vector, including using vector-of-vector.

Basics Example (refresher):
Interactive version: https://godbolt.org/z/5csjznTfc

std::vector is a c++ container - and can hold values of any type, including another vector. A vector-
of-vector is therefore, in a sense, a 2D vector.

NOTE however, that a vector-of-vector does not store all the memory contiguously in a single
block. Each internal vector stores all the elements in a single block, but each vector is stored in a
different location. That is why we cannot use a vector-of-vector in place of regular C-array to pass
matrix to LAPACK.

However, vector-of-vector is still very useful in many situations, since it lets us easily pass
individual internal vectors around to different functions. For example, you may store a set of
wavefunctions in a vector-of-vector-of-double, then you can pass individual wavefunctions
around, which is very nice.

#include <iostream>
#include <vector>
int main() {
 std::vector<int> v{3, 1, 4};

 std::cout << "Regular for loop:\n";
 for (int i = 0; i < v.size(); ++i) {
 std::cout << v.at(i) << "\n";
 }
 std::cout << "Ranged for loop:\n";
 for (auto x : v) {
 std::cout << x << "\n";
 }
 std::cout << "Ranged for loop, by reference:\n";
 for (auto &x : v) {
 std::cout << x << "\n";
 x *= 2; // by reference, can modify values
 }
 std::cout << "Ranged for loop, after modifying:\n";
 for (auto x : v) {
 std::cout << x << "\n";
 x *= 2; // by reference, can modify values
 }
}

af://n302
af://n306
https://godbolt.org/z/5csjznTfc

Example for vector-of-vector:
Interactive version: https://godbolt.org/z/7v67obYef

Operator overloads
You can make parts of your code much simpler to read/write by defining operator overloads for
std::vector.

Consider the below example, which provides a '+' operator:

Example
Interactive version:https://godbolt.org/z/d8GP9PWsf

#include <iostream>
#include <vector>

// Simple function; prints elements of a vector of int
void printVector(const std::vector<int>& v) {
 for (auto x : v) {
 std::cout << x << ", ";
 }
 std::cout << '\n';
}

int main() {
 // Create a vector of 3 empty vectors
 std::vector<std::vector<int>> v(3);
 std::cout << v.at(0).size() << "\n";
 std::cout << v.at(1).size() << "\n";
 std::cout << v.at(2).size() << "\n";

 // Nb: Can use ranged for loop too!
 for (const auto& x : v) {
 // 'auto' evaluiates to 'std::vector<int>' here
 // By reference, avoid copying entire vector
 std::cout << x.size() << "\n";
 }

 // Can fill internal vectors
 v.at(0).push_back(3);
 v.at(0).push_back(2);
 v.at(0).push_back(1);

 // Or set them equal to new vectors
 v.at(1) = {6, 7, 8, 9, 10};

 // Can send each internal vector to function!
 printVector(v.at(1));
}

#include <cassert>
#include <iostream>
#include <vector>

// Overload for '+'

https://godbolt.org/z/7v67obYef
af://n318
https://godbolt.org/z/d8GP9PWsf

NOTE it can be considered bad practice to overload operators for built-in types (like std::vector) -
since it may conflict with other parts of a code base. For this reason, it is encouraged to wrap
these overloads in a namespace. Then, use the using namespace directive to provide local
access to the operators only within a small scope, reducing risk of conflicts (hardly important for
small projects)

(For example, should '+' add together each element of a vector like {a+x, b+y, c+z}? Or join two vectors,
like {a,b,c,x,y,z}? What if you want different behaviour in different cases? What if you and a co-worker
disagree? In fact, this is the reason these are not already define as standard in c++)

Example

Part B: Worksheet tasks

std::vector<double> operator+(std::vector<double> &a,
 const std::vector<double> &b) {
 assert(a.size() == b.size() && "a and b must be same size");
 for (auto i = 0ul; i < b.size(); ++i) {
 a.at(i) += b.at(i);
 }
 return a;
}

// Simple function; prints elements of a vector of double
void printVector(const std::vector<double> &v) {
 for (auto x : v) {
 std::cout << x << ", ";
 }
 std::cout << '\n';
}

int main() {
 std::vector<double> v1{3.0, 3.5, 4.0};
 std::vector<double> v2{0.1, 0.2, 0.3};

 printVector(v1);
 printVector(v2);
 printVector(v1 + v2); //much easier than doing slow way!
}

namespace MyVectorOverloads {
std::vector<double> operator+(std::vector<double> &a, const std::vector<double>
&b) {...}
}

int main() {
 using namespace MyVectorOverloads; //put this in as narrow a scope as
practicle!
 std::vector<double> v1{3.0, 3.5, 4.0};
 std::vector<double> v2{0.1, 0.2, 0.3};
 printVector(v1 + v2);
}

af://n361

In the assignment, you are tasked with Solving Schodinger equation for a many-electron atom;
here we will practise the procedure for the simplest case of hydrogen.

The radial Hamiltonian for Hydrogen atom is:

We will use a new very powerful method to solve the Schrodinger equation, by expanding
the solutions over a basis of B-spline (basis) functions, b. (Use provided code to calculate B-
splines)

Solve the Schrodinger equation for Hydrogen by solving the eigenvalue problem using
DSYGV:

You can use any integration scheme for these integrals - it will be much easier if you store the
values of the B-splines in an array before trying to do the integrals. As described in lectures,
discard the first two (index=0 and 1) B-splines, and the last one (index=n-1) to enforce the
boundary conditions.

Use ~30-60 Bsplines of order k=7. You will have to choose good r0 and rmax.

1. Compare energies for s and p states to expected

Note: Biggest source of error likely comes from integration grid, r0, rmax, and
num_stepd
Since the H and B matrix sizes depend on number of B-splines used, NOT number of
integration points, we can increase number of points without slowing down code very
much!

2. Use expansion coefficients and B-splines to construct wavefunctions; check that they are
properly normalised (they should already be)

3. Plot wavefunctions for 1s, 2s, and 2p

4. Think about simple extension to this needed for assignment.

DSYGV parameters (very similar to DSYEV, can adapt previous code)

extern "C"
int dsygv_(
 int *ITYPE, // =1 for problems of type Av=eBv
 char *JOBZ, // ='V' means calculate eigenvectors
 char *UPLO, // 'U': upper triangle of matrix is stored, 'L': lower
 int *N, // dimension of matrix A
 double *A, // c-style array for matrix A (ptr to array, pointer to a[0])
 // On output, A contains matrix of eigenvectors
 int *LDA, // For us, LDA=N

Example for using the provided B-spline code

 double *B, // c-style array for matrix B [Av=eBv]
 int *LDB, // For us, LDB =N
 double *W, // Array of dimension N - will hold eigenvalues
 double *WORK, // 'workspace': array of dimension LWORK
 int *LWORK, // dimension of workspace: ~ 6*N works well
 int *INFO // error code: 0=worked.
);

#include "bspline.hpp"
#include <iostream>
int main(){
 double r0 = 1.0e-3;
 double rmax = 50.0;
 int k_spine = 7; // order of B-splines
 int n_spline = 60;

 // Initialise the B-spline object
 BSpline bspl(k_spine, n_spline, r0, rmax);

 // Value of the 1st (index=0) B-spline at r=0
 std::cout << bspl.b(0, 0.0) << "\n";
 // Value of the 6th (index=5) B-spline at r=1.5 au
 std::cout << bspl.b(5, 1.5) << "\n";
 // Value of the last (index=N-1) B-spline at r=rmax
 std::cout << bspl.b(n_spline - 1, rmax) << "\n";
}

	PHYS4070/7270 Worksheet: Week 11 (13/05/2021)
	Part A:
	Operator overloads

	Part B: Worksheet tasks

