
PHYS4070/7270 Worksheet: Week 7
(15/04/2021)

As before, the worksheet is broken into two parts.
Part A is a mini c++ tutorial on functions, templates, and functionals (functions which take
functions as arguments).
As before, part A is completely optional - you may find these higher-level c++ features
useful/interesting, but they are not required at all for the course.
Part B is the worksheet problems.

(Since we had only a single workshop last week, you may also want to use this time to finish last
weeks worksheet.)

Part A: C++ functions, templates,
functionals

While this is specific to c++, some general ideas hold for many languages (except templates)

1. Recap: function arguments; pass by value,
reference, pointer

Pass by value (aka pass by copy):

Gets a new copy of variable
Changes to this variable inside function do not affect original variable

Pass by reference:

Gets a reference to existing variable
Changes to this variable inside function do affect original variable

Pass by const reference:

Gets a reference to existing variable (so, no copy)

double sum_by_value(double x, double y) {
 // Gets own copy of x and y
 x += y;
 return x;
}

double sum_by_reference(double &x, double &y) {
 // Get *reference* to x and y - operate on existing variable!
 x += y;
 return x;
}

af://n624
af://n630
af://n633

Changes to this variable inside function are not allowed

Why?

When passing around simple data (e.g., an int , double) usually doesn't matter

If instead we are passing large data structures (like, an entire matrix), we don't want to
unnecessarily copy data (this is slow)

Note: sometimes we still do want to copy the data, but this allows us to control when
that happens

Beware passing by reference -- errors may be hard to debug. Prefer passing by value or by
const reference

You can also pass by pointer, const pointer, etc. etc.

Example:
Interactive version: https://godbolt.org/z/xcWsjbnWs

Output:

Optional/Default arguments

We can specify optional function arguments
They must be at the end of the input list
We must give them a default value in the function signature (declaration)

double sum_by_constref(const double &x, const double &y) {
 // x += y; // would not compile, cannot modify 'const' variable
 return x + y;
}

#include <iostream>
// ... include 3 above functions ...
int main() {
 double x = 2.0;
 double y = 3.5;

 std::cout << "x=" << x << ", y=" << y << "\n";

 double result1 = sum_by_value(x, y);
 std::cout << "x=" << x << ", y=" << y << ", result=" << result1 << "\n";

 double result2 = sum_by_reference(x, y);
 std::cout << "x=" << x << ", y=" << y << ", result=" << result2 << "\n";

 double result3 = sum_by_constref(x, y);
 std::cout << "x=" << x << ", y=" << y << ", result=" << result3 << "\n";
}

x=2, y=3.5
x=2, y=3.5, result=5.5
x=5.5, y=3.5, result=5.5
x=5.5, y=3.5, result=9

https://godbolt.org/z/xcWsjbnWs

Recursive functions

We can write functions which call themselves
Often very useful; but be careful not get stuck in an infinite loop - must have an exit
condition
Consider this simple example that calculates x^n:

2. Function overloading, and templates
Say we want a function that will work with more than one type, for example:

C++ allows function overloading -- where the same function name can be used for different
arguments (not allowed in C)
Which version of the function will be called will depend on the type of input variable (this has
potential for confusion, and hard-to-debug errors)
This example may appear silly, since int can be converted to double; however, it becomes
important for more complex types that cannot be so easily converted between (e.g., an array
of int cannot be simply converted to an array of double) - we may also want to avoid
conversions
This gets tedious quickly - there are an infinite number of types (since types can be user
defined)
To be more generic, we may use templates

// declare function:
double func(double x, double y, double z = 2.5);
// z is optional - if not given, will assume value is 2.5

// Then, on calling the function:
func(3.1, 2.7); // call with default argument
func(3.1, 2.7, 2.5); // exactly same as above
func(3.1, 2.7, 9.5); // call with different argument

double my_pow(double x, int n) {
 if (n == 0) {
 return 1.0;
 } else if (n < 0) {
 return 1.0 / my_pow(x, -n);
 } else {
 return x * my_pow(x, n - 1);
 }
}

double sum(double a, double b) { return a + b; }
int sum(int a, int b) { return a + b; }

template <typename T>
T sum(T a, T b) {
 return a + b;
}

af://n691

Here, 'T' is the name of a generic type - 'T' may be anything (called 'T' by convention, but can
be anything; can be more than one, e.g., <typename T, typename U> etc.)
Technically, this will generate code for you, at compile time; it will write each function
overload for you, based on which you actually use in your code
Must be defined either in a header file, or in the same .cpp file you use them
There are fancy ways to restrict which types T is allowed to take -- but we will ignore this
complexity for now.
This is just an extremely basic introduction to templates; the template system in c++ is its
own entire language, and is extremely powerful (though sometimes difficult to use)

Example:
Interactive version: https://godbolt.org/z/6974asEax

3. Functionals: Passing functions to functions
Sometimes it is extremely useful to have a function that takes another function as one of its
arguments
For example, we may want a function called 'integrate' that takes a function, f(x) , and
integrates it between x = [a,b] , e.g.:

#include <iostream>
#include <string>

// Declare a template: T is generic type, may be any type
template <typename T>
T sum(T a, T b) {
 return a + b;
}

int main() {
 int i1 = 1;
 int i2 = 2;
 int result1 = sum(i1, i2); // calls sum(int, int)

 double d1 = 1.01;
 double d2 = 2.02;
 double result2 = sum(d1, d2); // calls sum(double, double)

 // Even works with strings! (this may not be what you want)
 // Works with any type for which (a+b) is defined
 std::string s1 = "Hello ";
 std::string s2 = "world!";
 std::string result3 = sum(s1, s2); // calls sum(string, string)

 std::cout << result1 << " " << result2 << " " << result3 << "\n";
}

// nb: This doesn't work quite yet...
double integrate(Function f, double a, double b); //??

https://godbolt.org/z/6974asEax
af://n721

Can we do this? Yes! But not quite so simply. There are three key ways to do this: function
pointers, templates, and using c++ library std::function

..using function pointers

Old; we typically try to avoid this, because complicated

We can pass the memory adress of a function

In c++, a function name converts implicitely to the memory address of a function
(function pointer), so we do not need to use the & operator (though, we can)

For a function:

Function pointer has the form:

So, we could write our 'integrate' function as

and call it like:

..using templates

Since a template can be any type (including function pointer), this gives a simple way to pass
functions to functions
This is powerful, however, it is complex; if you get the code wrong, sometimes the error
messages will be extremely hard to decipher
We could write our 'integrate' function as

..using std::function

C++ provides a general class to hold a function (called function objects, or callables)
Requires c++11 or newer; you may need to add -std=c++11 compile option
need: #include <functional>
Avoids complexity of using templates and function pointers
When problems happen, usually get nice error messages
Has type of form

 OutType funcName(InType1 x, InType2 y, ...);

 OutType (*funcName)(InType1, InType2, ...)

 double integrate(double (*f)(double), double a, double b);

 double result = integrate(f, a, b);
 // double result = integrate(&f, a, b); // equivalent to above

 template<typename Function>
 double integrate(Function f, double a, double b);

 std::function<OutType(InType1, InType2, ...)>

af://n729
af://n754
af://n764

Often used with using keyword (like an alias) to save typing

e.g., our f(x) = x^2 function would be simply:

Example:
Functions that takes a function and integrates it (trapezoid rule) - using the three methods form
above.
Interactive version: https://godbolt.org/z/KGnMKbxPc

 using FuncType = std::function<OutType(InType1, InType2, ...)>;
 // Then, just use 'FuncType' as the type when needed

 std::function<double(double)>

#include <functional>
#include <iostream>

// Simple function, f(x)=x^2, which we will integrate
double f(double x) { return x * x; }

// Function that integrates another function; uses function pointer
double integrate_fp(double (*f)(double), double a, double b) {
 int n_pts = 100;
 double dx = (b - a) / (n_pts - 1);
 double integral = (f(a) + f(b)) * (dx / 2.0);
 for (int i = 1; i < n_pts - 1; ++i) {
 double x = a + i * dx;
 integral += f(x) * dx;
 }
 return integral;
}

// ...; uses templates
template <typename Function>
double integrate_tmpl(Function f, double a, double b) {
// ... same as above ...
}

// ...; uses std::function
double integrate_std(std::function<double(double)> f, double a, double b) {
// ... same as above ...
}

int main() {
 double exact = 2.0 / 3;
 double result1 = integrate_fp(f, -1.0, 1.0);
 double result2 = integrate_tmpl(f, -1.0, 1.0);
 double result3 = integrate_std(f, -1.0, 1.0);
 std::cout << exact << ", " << result1 << ", " << result2 << ", " << result3 <<
"\n";
}

https://godbolt.org/z/KGnMKbxPc

4. Lambdas

Lambdas are "un-named" inline functions

(un-named is a little confusing, since they can have names..)
Requires c++11 or newer; you may need to add -std=c++11 compile option

A nice way to define (usually short) functions inline (inside main())

They are often passed as input to other functions (like STL standard algorithms)

Have general form: [captures](parameters){function body;}

For example, a lambda version of our 'f' function from above, which takes a double x and
returns a double x*x, is

Captures allow us to include local data in a function - usually there are no captures, so the '[]'
are empty

Combining with our 'integrate' function from above, we could have:

We can give lambdas names, which makes code more readable. But, you must use auto for
the type:

 [](double x){ return x * x; }

 double y = 7.5;
 [y](double x){ return y * x * x; }

 double result = integrate_std([](double x) { return x * x; }, -1.0, 1.0);

 auto my_lambda = [](double x) { return x * x; };
 double result = integrate_std(my_lambda, -1.0, 1.0);

af://n791
af://n1059

Part B: Worksheet tasks
Consider function:

Over domain x = [0, 3]
Exact value of the integral is: 0.059972633417316158....

1. Calculate the integral of the above function over [0,3]
using

Trapezoid rule

Simpsons rule

k=5 Mixed-quadrature rule:

and compare the resulting error (difference between calculated and exact value).

Do for:

N = 11, 51, 101
Note: N must be odd for Simpsons rule; and we must have N>2*k for mixed quadrature rule

The weights for a k=5 mixed quadrature rule are:

w = {475.0/1440, 1902.0/1440, 1104.0/1440, 1586.0/1440, 1413.0/1440}

2. How many points do we need to use in the trapezoid rule
for the error of the trapezoid rule to become smaller than
that of the k=5 mixed-quadrature rule with n=100?

Code a loop that calculates the integral using trapezoid rule with varying number of points,
starting from n=100
Continue until the error drops below that of the mixed-quadrature rule (with n=100)

3. [optional] Code an adaptive integration algorithm

Adaptive methods need two things:

A method to integrate function over a given domain
A method to estimate the error of the integral

af://n1059
af://n834
af://n859
af://n867

They continuously sub-divide the integral into smaller-and-smaller sub-domains until the
error for each drops below a given target

Estimate the error by performing integral twice using a different number of points. For
example, once using Simpsons rule with 3 points (n=3), and once with 7. (we don't need large
n, since this will be taken into account by the recursive nature of algorithm)

Estimate the error in the integral as the difference between these two values.

If the error is too large, divide the integration region into two - and perform the same
algorithm for each half

By continuing in this manner, we continuously divide sub-domains up until the error for
the integral of each sub-domain drops below a specified value

A rough pseudo-code algorithm is provided below; use it to guide your code

This will be much easier if we use some concepts from Part A (functionals and recursive
functions)

Recursive functions can easily get out-of-hand - you may want to code in a counter that
keeps track of the depth, and kills the function if the depth becomes too deep

Test it by integrating f(x) as above

If you don't want to code the algorithm, use my simple one (end of document)

4. Use your (or my) adaptive method for 'tricky' function

Consider 'tricky' function

 Integrate this tricky below function over domain [0,1]:

Adaptive(Function, a, b, error_target):

 A1 = Integrate function (a,b) using Simpsons rule, n=3
 A2 = Integrate function (a,b) using Simpsons rule, n=7
 error = |A1-A2| (absolute value)

 if error is less than error_target:
 answer = A2
 return answer
 FINISHED

 otherwise:
 // call adaptive on sub-domains (a,m) and (m,b)
 // divide target_error by 2, since domain is half the size
 // (want the total error to be less than error_target)
 m = (a+b)/2
 answer = Adaptive(Function, a, m, error_target/2)
 + Adaptive(Function, m, b, error_target/2)
 return answer
 FINISHED

af://n899

This function is very hard to integrate, due to near-singular

Accurate value should be ~6.39019353...

Integrate it using N=1001 using Simpsons and mixed-quadrature rules

You will notice the result is not even close to correct
Now, integrate it using your adaptive method

5. Vacuum polarisation - Uehling potential

In quantum electrodynamics, the regular Coulomb interaction between two charges is perturbed
by an effect called vacuum polarisation. It is caused by the creation of short-lived virtual electron-
positron pairs out of the vacuum. This effect is largest in strong electric fields, and at very high
energies. It must be taken into account for accurate calculations, including in atomic physics.

The Uehling potential, which describes the vaccuum polarisation correction to the regular
Coulomb atomic potential, is (in atomic units):

The approximation in the second line is rough, but comes from fact that integrand becomes very
small for t>r. This potential is largest at small r, where the electric field of the nucleus is extremely
strong.

The nuclear radius is on the order to ~1 fm (10^{-15} m) - which is around 10^-5 aB (10^-5
atomic units)
Evaluate the Uehling potential at r = 1.0e-5 by performing the integral over dummy-variable
t, using Simpsons rule with N=1001 and the adaptive method
Accurate value should be ~-5.859605..
To include the Uehling potential into calculations, we would need to evaluate it accurately at
many points along r - the usefulness of adaptive methods in real-life examples should be
clear

Example:
Simple function to integrate function f from [a,b], using adaptive method
Interactive version: https://godbolt.org/z/f865zExeY

#include <cassert>
#include <cmath>
#include <functional>
#include <iostream>

// 'using' (alias) for functional std::function
using Function = std::function<double(double)>;

af://n916
https://godbolt.org/z/f865zExeY

// Function that integrates function f, over [a,b], using Simpsons rule.
// Note: n_pts must be odd (even sub-intervals)
double Simpsons(Function f, double a, double b, int n_pts) {
 assert(n_pts % 2 != 0 && "n_pts must be odd for Simpsons rule");
 double dx = (b - a) / (n_pts - 1);
 double integral = (f(a) + f(b)) * dx / 3.0;
 for (int i = 1; i < n_pts - 1; ++i) {
 // ternary operator: w = condition ? val_if_true : val_if_false;
 // i % 2 == 0 means (i, mod 2) - is 0 if i is even
 double w = (i % 2 == 0) ? (2.0 / 3) : (4.0 / 3); // weight
 double x = a + i * dx;
 integral += f(x) * dx * w;
 }
 return integral;
}

// Integrates function f from [a,b], using adaptive method, until error drops
// below err_target. Recursive function.
// Note: This is very inefficient; I have tried to make it simple abd clear at
// the expense of performance
double adaptive(Function f, double a, double b, double err_target,
 int depth = 1) {
 // Calculate integral twice, once with 3, once with 7 points
 // 3 is minimum for Simpsons rule
 double integral_3 = Simpsons(f, a, b, 3);
 double integral_7 = Simpsons(f, a, b, 7);
 // Error is difference between these
 double err = std::abs(integral_3 - integral_7);
 if (err < err_target || depth > 100) {
 // if error is small, or depth exceeds limit, return best guess
 return integral_7;
 } else {
 double m = (a + b) / 2.0; // mid-point
 // divide target error by 2, since each domain is half the size
 // Increase depth counter as we recursively call function:
 return adaptive(f, a, m, err_target / 2.0, depth + 1) +
 adaptive(f, m, b, err_target / 2.0, depth + 1);
 }
}

	PHYS4070/7270 Worksheet: Week 7 (15/04/2021)
	Part A: C++ functions, templates, functionals
	1. Recap: function arguments; pass by value, reference, pointer
	2. Function overloading, and templates
	3. Functionals: Passing functions to functions
	..using function pointers
	..using templates
	..using std::function
	4. Lambdas

	Part B: Worksheet tasks
	1. Calculate the integral of the above function over [0,3] using
	2. How many points do we need to use in the trapezoid rule for the error of the trapezoid rule to become smaller than that of the k=5 mixed-quadrature rule with n=100?
	3. [optional] Code an adaptive integration algorithm
	4. Use your (or my) adaptive method for 'tricky' function
	5. Vacuum polarisation - Uehling potential

