
PHYS4070/7270 Worksheet: Week 6 (01/04/2021)
This work sheet is broken into two parts.
Part A acts as a basic introduction to using arrays and classes in c++, and part B is the actual worksheet problems.
Feel free to skip the part A and move straight to the problems in B - you can refer back to part A if need be.

Part A: Intro to c++ arrays, matrices, classes
You are not expected to know all the ins-and-outs of c++ - this will not "be on the test".
However, you may find it useful to have a basic understanding of these concepts; they will help you understand what is going
on and why, and will hopefully be helpful for the assignment.
You can also access an even more basic c++ "cheat sheet" here:

https://github.com/benroberts999/cpp-cheatsheet
(also in course git repo)

This is by no means a complete overview - just a very basic introduction.

1. Crash-course: Memory, data, arrays

Pointers: memory locations

Pointers are variables that store memory addresses (memory locations)
You do not really need this for this class, however, a basic understanding will help with understanding why certain things
are the way they are.

 double x = 3.14;
 std::cout << x << '\n';
 // '&' symbol gets the memory address:
 std::cout << &x << '\n';
 // Define a pointer variable (pointer to double), px,
 // set it equal to the memory location of x:
 double *px = &x;
 std::cout << px << '\n';
 // Here, the '*' symbol "dereferences" the pointer, accesses the value
 std::cout << *px << '\n';

Old C-style arrays

Contiguous chunks of memory
see: http://www.cplusplus.com/doc/tutorial/arrays/

 double a[3] = {40.70, 72.70, 2021.0};
 std::cout << a[0] << ", " << a[1] << ", " << a[2] << '\n';
 // The memory location of a c-style array is the memory location of its first element
 std::cout << &a << ' ' << &(a[0]) << '\n';
 // The memory location are off-set by 8 bytes (in hex)
 std::cout << sizeof(double) << '\n';
 std::cout << &a[0] << ", " << &a[1] << ", " << &a[2] << '\n';
 // No array bounds checking: a[x] just means go 'x' memory slots after a[0]
 // This would work, but is undefined behaviour
 // std::cout << a[3] << '\n'; // woops!

https://github.com/benroberts999/cpp-cheatsheet
http://www.cplusplus.com/doc/tutorial/arrays/

The way I've done it here, the size of the matrix must be known at compile time - this is static memory allocation
It is also possible to create c-style arrays where the dimension is not known until runtime (i.e., can re-size the array). This is
known as dynamic memory allocation, and is done with the new and delete keywords
In modern c++, we rarely (if ever) need to do this; instead we will use std::array for fixed-size (static) arrays, and std::vector
for variable-sized (dynamic0 arrays

c++ style static array: std::array

std::array is a fixed-size sequence container: holds a specific number of elements ordered in a strict linear sequence
Size is constant, must be known at compile time
see: https://www.cplusplus.com/reference/array/array/
see: https://en.cppreference.com/w/cpp/container/array

 std::array<double, 3> b{40.70, 72.70, 20.21};
 std::cout << b[0] << ", " << b[1] << ", " << b[2] << '\n';
 // Data still stored in contiguous block
 std::cout << &b[0] << ", " << &b[1] << ", " << &b[2] << '\n';
 // Knows its own size:
 std::cout << b.size() << '\n';
 // Have array-bounds checking
 std::cout << b.at(0) << ", " << b.at(1) << ", " << b.at(2) << '\n';
 // This would *not* work - will get sensible error message
 // std::cout << b.at(3) << '\n';
 // Ranged-based for loops
 for(double element : b){
 std::cout << element << '\n';
 }

c++ style dynamic array: std::vector

std::vector is a sequence container representing an array that can change in size
Data is stored contiguously (in single block), compatible with c-style array
see: https://www.cplusplus.com/reference/vector/vector/
see: https://en.cppreference.com/w/cpp/container/vector
In general: std::vector should often be your default data-structure

 std::vector<double> v1(3); // this auto-fills 3-element vector with 0s
 // create vector with 2 elements:
 std::vector<double> v{40.70, 72.70};
 std::cout << v.size() << '\n';
 // and add a third:
 v.push_back(20.21);
 std::cout << v.size() << '\n';
 // Data also stored in contiguous block
 std::cout << &v[0] << ", " << &v[1] << ", " << &v[2] << '\n';
 // But memory address of v _not_ same as first element:
 std::cout << &v << ' ' << &(v[0]) << '\n';
 // To use existing (C/Fortran) libraries, we can access the underlying c-style array with .data()
 std::cout << v.data() << ' ' << &(v[0]) << '\n';

.data() -- returns a pointer to underlying data (compatible with c-style array)

.resize(n) -- changes size of vector to 'n' (fills new elements with zero)

2. STL: Standard Template Library

STL is an enormous collection of algorithms
Many located in <algorithm> and <numeric> headers
Common ones include: std::sort, std::accumulate, std::for_each

https://www.cplusplus.com/reference/array/array/
https://en.cppreference.com/w/cpp/container/array
https://www.cplusplus.com/reference/vector/vector/
https://en.cppreference.com/w/cpp/container/vector

 std::vector<int> v{6,3,7,9,1,0,2,5};

 for(auto x : v){
 std::cout << x << ", ";
 }
 std::cout << '\n';

 std::sort(v.begin(), v.end());

 for(auto x : v){
 std::cout << x << ", ";
 }
 std::cout << '\n';

 int sum = std::accumulate(v.begin(), v.end(), 0);
 std::cout << sum << '\n';

3. Storing matrix in c++

Focus on 2D matrix; generalisation to multi-dimension matrix is fairly simple
Old C-style (for fixed-size, static memory) array:

 static const int dim = 2; //'static const': must be compile-time constant!
 double x[dim][dim] = {0.5, 1.5, 2.5, 3.5};
 for(int i=0; i<dim; i++){
 for(int j=0; j<dim; j++){
 std::cout << x[i][j] << ' ';
 }
 std::cout << '\n';
 }

 // Exactly equivalent to:
 double y[dim*dim] = {0.5, 1.5, 2.5, 3.5};
 for(int i=0; i<dim; i++){
 for(int j=0; j<dim; j++){
 std::cout << y[i*dim + j] << ' ';
 }
 std::cout << '\n';
 }

The 2D array is actually stored as a single chunk of memory (i.e. in 1 dimension), and [i][j] is just short-hand for (i*dim+j)
Can do this using dynamic memory allocation too, but we will not; in c++ there are nicer ways
In modern c++, we would not use a basic c-array, but instead use a class (data structure from a library). Examples below.

nested classes:

It is possible to declare an std::array of std::arrays:
This is exactly identical to the above c-style array
Though, you can see that this will get cumbersome quickly

 std::array<std::array<double,dim>,dim> z{0.5, 1.5, 2.5, 3.5};
 for(int i=0; i<dim; i++){
 for(int j=0; j<dim; j++){
 std::cout << z[i][j] << ' ';
 }
 std::cout << '\n';
 }

It is also possible to store a std::vector of std::vectors.
 std::vector<std::vector<double>> x;

HOWEVER, this data is not stored as a contiguous array, so this is not equivalent to the c-style array
We can however use an std::vector to store a 2D matrix, we just need to access the elements using the i*dim+j

nb: in some old versions of c++ (old compilers), you were not allowed to have double >> (since this is a special
operator)
i.e.: std::vector<std::vector<double>> x; --> std::vector<std::vector<double> > x; (extra space)
This essentially was a bug, which has been fixed (but may persist in old compilers, such as those on smp-teaching)

Using regular std::vector, wrap in a class:

We can however use an std::vector to store a 2D matrix, we just need to access the elements using the i*dim+j

 std::vector<double> v{0.5, 1.5, 2.5, 3.5};
 int dim = 2; //regular int
 for(int i=0; i<dim; i++){
 for(int j=0; j<dim; j++){
 std::cout << v.at(i*dim + j)<<" ";
 }
 std::cout<<'\n';
 }

In order to make things easier, we will make our own class that holds a matrix using std::vector to store data
In real-world code, many such classes exist already, and we would use one of these matrix classes (e.g., from the great
'Eigen' library)
But here, we will "re-invent the wheel", since it is a good learning exercise, and will greatly help you understand classes in
c++

4. Classes

Classes (and structs) are data structures that contain data (member variables), and functions (sometimes called methods)
Some are provided by c++ libraries; we can also write our own

 class MyClass{};
 struct MyStruct{};

Notice the semi-colon
Only difference between class and struct: members in class are private by default; those of struct are public by default
Public mean accessible outside the class; private means not
By convention, structs are used for very small objects (one or two members, no functions), and classes are used for large
ones with functions

 // define a class:
 class MyClass{
 private:
 int a = 1;
 public:
 int b = 2;
 };

 // Construct object of type 'MyClass', call it mc:
 MyClass mc;
 std::cout << mc.b << '\n';
 // std::cout << mc.a << '\n'; - does not work, "a is private in this scope"

Constructor, member initialiser list

Constructor is a function that is called
member initializer list initialises member variables

funny syntax: a colon ':' after (), but before {}

 class MyClass{
 public:

 // data stored in the class
 int a;

 // Constructor, using member initializer list:
 MyClass(int in_a) : a(in_a) {}

 // We could also write it as:
 // MyClass(int in_a){
 // a = in_a;
 // }
 // However, in this case, the int a in constructed, then set to in_a
 // With the member initializer list, these happen at the same time
 };

 // Use it:
 MyClass mc{4};
 std::cout << mc.a << '\n';

Member functions

Member functions work just like other functions, but have access to class data
called using the '.'

object.function()

 class MyClass{
 private:
 int b = 7;

 public:

 int a;

 MyClass(int in_a) : a(in_a) {}

 // Member function:
 double square_a(){
 return a*a;
 }

 // Can use member functions to interface with private variables
 void print_b(){
 std::cout << b << '\n';
 }

 };

 // Use it:
 MyClass mc{4};
 std::cout << mc.a << '\n';
 std::cout << mc.square_a() << '\n';
 mc.print_b();

Operator overloading

In c++, we may define operators that act on our own user-defined classes
We may overload: +,-,/,*,==,>,< etc. etc.
This is very useful: and leads to nice-looking code. e.g.,

Matrix3 = Matrix1 * Matrix2, instead of
Matrix3 = matrix_multiplication(Matrix1,Matrix2);

 class MyClass{
 public:

 int a;

 MyClass(int in_a) : a(in_a) {}

 friend MyClass operator+(MyClass lhs, MyClass rhs){
 int sum_of_a = lhs.a + rhs.a;
 MyClass result{sum_of_a};
 return result;
 }

 };

 // Use it:
 MyClass mc1{4};
 MyClass mc2{6};
 MyClass mc3 = mc1 + mc2;
 std::cout << mc1.a << '\n';
 std::cout << mc2.a << '\n';
 std::cout << mc3.a << '\n';

Part B: Worksheet Tasks

1. Write a class to store a 2D square matrix

Use std::vector to hold data
The constructor should take the dimension N as input, and create a vector of correct length (N*N)
Provide a member function to return .data() from vector, so we can access the c-style array (needed to interface with
lapack)

 double * get_data() { return v.data(); }

Provide a function that allows us to read and edit the i,j element
To edit, this must return a reference, e.g.,
 double & at(int j, int j) { return v.at(i*dimension + j); }

This allows, e.g., x = matrix.at(i,j); and matrix.at(i,j) = x;
Provide operator overload of '+', that allows us to add two matrices together

2. Write a function that takes in a matrix (class you created above)
and find the eigenvalues and eigenvectors

Assume the matrix is real and symmetric, so use LAPACK function DSYV
Documentation: http://www.netlib.org/lapack/explore-html/index.html
In/out parameters listed below:

http://www.netlib.org/lapack/explore-html/index.html

int dsyev_(
 char * jobz, // 'V' = compute e. values and vectors. 'N' = values only
 char * uplo, // 'U' = upper triangle of matrix is stored, 'L' = lower
 int * n, // dimension of matrix a
 double * a, // c-style array for matrix a (ptr to array, pointer to a[0])
 // On output, a contains matrix of eigenvectors
 int * lda, // For us, lda=n
 double * w, // array of dimension n - will hold eigenvalues
 double * work,// 'workspace': array of dimension lwork
 int * lwork, // dimension of workspace: ~ 6*n works well
 int * info // error code: 0=worked.
);

This function should return the eigen values and vectors [eigenvectors are stored in a matrix (2D array)]
Eigenvalues are sorted, and eigenvectors are normalised to 1 (via inner product)
Normally, functions in c++ return only one thing. We have two options:
A: Pass in/out parameters to function by reference like this:

 void solveEigenSystem(Matrix matrix, Matrix &eigenvectors, Vector &eigenvalues);

This is typically frowned upon, since it makes code difficult to read (which value is input, which is output?)
B: Define a class/struct that holds a matrix of eigenvectors and a vector of eigenvalues, (e.g., called MatrixAndVector), and
returns this

 MatrixAndVector solveEigenSystem(Matrix matrix);

Note: FORTRAN (language LAPACK is written in) uses column-major ordering to access 2D arrays, wile c and c++ use row-
major. This means m[i][j] in c++ is m[j][i] in FORTRAN.. so we often need to transpose the matrix before sending to LAPACK

Our matrix is symmetric, so this doesn't matter, except for 'uplo'
'uplo': 'U' means upper triangle in FORTRAN is stored -- so lower in c++ [we can just fill entire matrix though]
For other LAPACK functions, you can often just tell them the matrix is a transpose, so we don't need to waste time
transposing it ourselves

Don't forget extern "C" , and to declare the dsyev_ function. and the -llapack linker (compile) flag (on macos, you may
also need the -lblas flag)

3. Use your code to calculate eigen values/vectors of simple 2x2
matrix

 m_ij := 1.0 / (i + j + 1.0), (for i & j = 0,1)

Expected eigenvalues should be: {1.26759, 0.0657415}
With corresponding eigenvectors: {{1.86852, 1.}, {-0.535184, 1.}}

4. Quantum simple harmonic oscillator

The Hamiltonian of QSHO, in simplest units case, is
 H = p^2/2 + x^2/2

p is momentum operator, x is position
Use finite-difference method to solve Shrodinger equation on interval x=[-5,5] by casting problem to matrix eigenvalue
problem

Encode derivative operator as a matrix: (… 1, -2, 1, 0, …) / dx^2
dx = (xmax - xmin)/Nsteps

Form full symmetric Hamiltonian matrix
Use hard boundary condition
Probably need at least a few hundred steps

Compare eigenvalues to known energies: En = (n + 1/2)
We also have a full set of orthogonal wavefunctions (eigenvectors). These are not yet properly normalised
Check that the first two wavefunctions (eigenvectors) are indeed orthogonal
Plot First 3 wavefunctions - do the look how you expect?

