PHYS4070/PHYS7270 — Due date: 24/05/2021 12 noon
Assignment 5 - Multi-electron atoms and perturbation theory

Help: Rm 6-427, Mon 1-2pm, Tues & Wed, 2-3pm; b.roberts@Quq.edu.au

A Background

Except where stated, I use atomic units (h = |e| = m. = \/4meg = 1, ¢ = 1/a = 137) throughout.
For an M-electron atom (for neutral atoms, M = Z), the total wavefunction, W(ry, .., 7)), satisfies
the total Schrodinger equation:
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In the independent particle model, the total wavefunction is formed from combinations of single-particle
wavefunctions, 1, which we decompose as usual:
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The P(r) functions (single-particle radial wavefunctions) are eigenstates of the radial Hamiltonian:
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where V,_, is the electron-electron repulsion term due to interaction with all other electrons.
As a first step, we approximate V,_, using a parametric potential, the Green potential:
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which roughly mimics the average electron-electron repulsion (h and d are parameters). Note that
Viue () + V(1) behaves like —Z/r for small r, and —1/r for large r.
We will solve the Schrodiner equation by expanding the radial wavefunctions over a basis:
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where {c¢;} are expansion coefficients, and {b;(r)} are basis functions. We will use a B-spline basis.
With this, the single-particle Schrodinger equation takes the form:
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where we used Dirac notation for the B-splines: |i) = b; (I will drop the ,. subscript from here on).
Note: The B-splines are not orthogonal, they are not normalised, and they are not eigenstates of the
Hamiltonian.



B Problems — Lithium

1. Solve Schrodinger equation (7) for the single-particle s (I = 0) and p (I = 1) states of atomic
lithium (Z = 3), by solving the Generalised Eigenvalue Problem:
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Here, H and S are N, x N, square matrices, with elements:
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with NV, being the number of basis states (B-splines) used the the expansion (6).

e Use the Green potential (5) with h = 1 and d = 0.2 to model the electron-electron repulsion
(don’t forget to also include the regular atomic potential V4 too!)

e Use the provided code (in bspline.hpp) to calculate the B-spine basis functions, and calculate
their derivatives using:

db b(r + dr/2) — b(r — dr/2)
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and /or e —b(r) = 5,2

e To enforce boundary conditions at » — 0, exclude the first two B-splines from the expansion;
to enforce boundary conditions at » — 0o, exclude the last B-spline from the expansion
e Use the LAPACK routine DSYGYV to solve the matrix problem (DSYGV, not DSYEV!)

e The result will be a set of eigenvalues, which correspond to the single-particle energies ¢, and
a set of eigenvectors, which correspond to the ¢; expansion coefficients

e You will have to do this twice, once for s, and once for p

2. Compare the binding energies to experimental values for the lowest valence s and p
valence states (that is 2s and 2p, remembering that principal quantum number number starts at
Nmin = [ + 1). The experimental binding energies (negative of the ionisation potential) are

en™ ~ —5.392.eV = —0.198au.,  ep™ ~ —3.544.eV = —0.130 a..

Note: do not be too sad if you don’t agree well with experiment — we are calculating a complex
many-body problem using a crude approximation! We will try to improve on this below, using
the techniques from lectures.

3. Expand the single-particle wavefunctions for the s and p states in terms of the basis
functions, using Eq. (6) and your calculated expansion coefficients.

e The wavefunctions should already be normalised

e Plot the single-particle radial wavefunctions, P(r), for the 2s and 2p states.



4. Calculate the first-order perturbation theory correction to the 2s and 2p energies.

We could write the complete Hamiltonian as Hy = Hqg, + 0V, where Hg, is the approximate
Hamiltonian we used as a first approximation (using the Green potential), and
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The find the perturbation theory correction to the binding energy for the valence electron, we
must evaluate the expectation value of §V, using the many-body rules we saw in class.

The Green’s potential part is simple, since it is a one-body potential:
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The electron-electron repulsion term is more complicated, since it is a two-body potential. We
must use the rules from many-body quantum mechanics to calculate it. We get:
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The first term is the direct contribution, the second is exchange. The exchange gives a relatively
small effect, so we will exclude it. The direct term is much simpler to calculate.

Using the Laplace expansion, and neglecting exchange, we find:
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where 7~ = max(r1,72) (only the zero multipolarity term survives in the Laplace expansion here).

The sum extends over all other electrons in the atom. Since we calculate the correction to Li
valence states, the sum runs only over the 1s states. After integrating over angles and summing
over angular quantum numbers (including spin), we arrive at:
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It is tricky to efficiently calculate y(r) - I have provided code that will do this for you.

e (Calculate the first-order perturbation theory energy correction to the 2s and 2p states using
EqS- (12) and (13) 5525 = <‘/ee>2s - <VGr>237 552]0 = <V;e>2p - <VGr>2p

e Compare the corrected energies, € + de, to the experimental values.

5. Self-consistent Hartree procedure.

Eq. (13) motivates us to define a potential, called the direct potential, which in our case is simply
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Note that this potential depends on the 1s wavefunction, and is just the electrostatic potential
due to the 2 1s electrons. We can use this potential in pace of Vi, to solve the Schrodinger
equation. We can do this iteratively; at each step, we get a better approximation for the 1s
electron wavefunctions, which gives us a better approximation for Vg, which we use to get a
better-yet approximation for the 1s electrons and so on, until we achieve convergence. This is
called the Hartree procedure.



Re-solve the Schrodinger equation using Vg;, in place of Vi,

Use these updated wavefunctions to re-calculate Vy;,

Repeat this procedure ~15 times, and plot the value of the 2s and 2p energies at each step

Comment on the convergence and the agreement with experimental values

What can we do to further improve the accuracy?

PHYS7270 only:

6.

C

What is the first-order correction to the 2s and 2p energies, after using the Hartree
procedure (again, excluding exchange). Hint: you do not need to calculate anything, the result
can be derived exactly using equations.

Submission

Submit your report and your source code via the git submission server.

git clone phys4070@Qgit.science.uq.edu.aun:assignments/ab /sX XX XXXX assignment
(this will initialise an empty repository in the assignment5 directory)

Then, add, commit, and push your files onto the git server as per workshop 2 (see WS02)

Please submit:

Your report (as a pdf) that must cover all of the tasks and be written in a professional style

Your source code. You may organise the files however you wish — for readability, you may want
to split your functions across several files

A bash script that compiles the code

Any other files needed for the bash script to produce and present the assignment data.

Hints

Use an equally-spaced radial grid to perform the integrals required. A good starting point will be
to define the grid between ry ~ 1073 to ry.c =~ 50, using 1000 steps

Use this 79 and rp.x for the B-spline functions (see example below)
You should use ~60 B-splines of order 7 (you can play with these, this is a good starting point)

You will find it easiest to calculate and store the values of the B-splines and their derivatives in
arrays before completing the rest of the problems

You might find it most easy to store the B-splines and the calculated wavefunctions in a vector-
of-vectors, allowing you to pass individual B-splines or P wavefunctions to c¢++ functions (for
example, to perform integrals) — see worksheet

std::vector<std::vector<double>>

This assignment requires you to do very similar tasks multiple times (solve eigenvalue, expand
wavefunctions, calculate potential, do integrations) — if you write a function to do each of these,
your life will be much easier

You may want to use operator-overloads for * and + for std::vector — see worksheet
Compile your code with “-O3” option, which enables the optimiser (code will be much faster)

DSYGV documentation: http://www.netlib.org/lapack/explore-html/


http://www.netlib.org/lapack/explore-html/

Example for using the provided B-spline code:

#include "bspline.hpp"
#include <iostream>
int main(){

double r0 = 1.0e-3;

double rmax = 50.0;

int k_spine = 7; // order of B-splines
int n_spline = 60;

// Initialise the B-spline object
BSpline bspl(k_spine, n_spline, rO, rmax);

// Value of the 1st (index=0) B-spline at r=0
std::cout << bspl.b(0, 0.0) << "\n'";

// Value of the 6th (index=5) B-spline at r=1.5 au
std::cout << bspl.b(5, 1.5) << "\n";

// Value of the last (index=N-1) B-spline at r=rmax
std::cout << bspl.b(n_spline - 1, rmax) << "\n';

Example for using the provided code to calculate y(r):

#include "calculateYO.hpp"
int main() {
std::vector<double> r_vector;

// ... fill r_vector with radial grid: r0 to rmax in N steps
std::vector<double> P_1s;
// ... fill P_1s is 1s wavefunction values on radial grid

// calculate y_1s: Takes wavefunction as 1st input, radial vector as second
std::vector<double> y = Y0::yObb(P_1s, r_vector);

DSYGV: Very similar to DSYEV we used last time. see http://www.netlib.org/lapack/explore-html/

extern "C"

extern int dsygv_(int *ITYPE, char *JOBZ, char *UPLO, int #*N, double *A,
int *LDA, double *B, int *LDB, double *W, double *WORK,
int *LWORK, int *INFO0);

e ITYPE =1 for problems of type Av=eBv

e JOBZ = “V” means calculate eigenvectors

e UPLO = “U” or “L” - depending if we filled upper or lower part of symmetric matrix (just fill both)
e N — dimension of matrix

e A — Input ‘A’ matrix [Av=eBv]. On output, contains matrix of eigenvectors
e LDA — for us, LDA =N

e B —the ‘B’ matrix

e LDB - for us, LDB =N

e W — array that will contain the eigenvalues once finished

e WORK - blank array of length LWORK, memory used by LAPACK

e LWORK - 6 x N works well

e INFO — error code. INFO=0 if everything worked.


http://www.netlib.org/lapack/explore-html/
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