PHYS4070. Atomic Physics 1: Hydrogenlike ions — 29 March 2021 B. M. Roberts

1 Atomic physics — hydrogen-like ions
1.1 Hydrogenlike ions: quick review L
1.2 Numerical solution to radial equation e
1.3 Example: finite difference method: solve DE as matrix eigenvalue problem

OO W~ = =

1 Atomic physics — hydrogen-like ions
e Here: focus on solving Schrodinger equation for single-electron wavefunction (e.g., hydrogen)

e Useful, even for more complex atoms, since we use single-electron wavefunctions to build multi-
electron wavefunctions

1.1 Hydrogenlike ions: quick review

Very quick review here. For more details, see, e.g., textbook [W. R. Johnson, Atomic Structure
Theory (2007)], available as pdf from library.

1.1.1 Angular separation

In general, we have the Schrodinger equation:
H Y = e, (1)

where)

i) =2 1 vir) (2)

2m
with p = —iAV.
For single-electron atoms, the potential is entirely spherically symmetric, meaning;:
Ze?

Amegr

Therefore, it is simplest to work in spherical coordinates, in which

10,0 1o 9 1 o
2 _ - 2_ - . i .
V=g (T 87’) T o 00 (Sm@ae) T mamrg g

Motivated by the spherical symmetry, we use the separation of variables for :

Putting this back into the Hamiltonian equation, leads to two equations:

) % 1y
9 (ing) 4 T Ly =
Sin 6 96 (Sm 89) Tz ag T =0 (5)
and PP 2 A2
m
or? + h2 <€ —Vi) - 2mr2> P=0, (6)

where \ is a separation constant.
Notice that Eq. (5) is independent of the potential V' and the energy e; therefore the solutions
are always the same. The solutions are the spherical harmonics

Y =Y (7)

PHYS4070. Atomic Physics 1: Hydrogenlike ions — 29 March 2021 B. M. Roberts

for integer values of A = [({+1) and m. [takes values 0, 1,2, 3, ..., and m takes the values —(, ..., 0, ..., l.
This is not proved here, but is done in any quantum mechanics textbook.
The spherical harmonics are orbital momentum eigenstates according to:

L*[lm) = R?I(1 + 1)|Im) (8)
L.|lm) = hm|lm) (9)

where L = r x p is the operator of (orbital) angular momentum, and using Dirac notation so that
|lm) represents spherical harmonic Y},,. Therefore, we recognise [as the total (orbital) angular
momentum, and m as its projection onto z quantisation axis. These are normalised according to

/Y}f‘m,Y}m dQ = o, (10)
(dS2 = sin 6d¢pdo).

Thus, the problem reduces to solving the radial equation (6), which depends on the potential V|
which we can write as:

\[%% V) + %lp(m — =P(r). (11)

We may therefore define the “radial Schrodinger equation”, H,.P = ¢P. For a given [, the equation
has an infinite number of solutions — we label the bound-state solutions with n (principal quantum
number) P, n =1,2,3, ..., with n > [. They are normalised as

/Pn/lpnl dr = 5nn/. (12)
For Hydrogenlike ions, V(r) = — 4f:§r7 and the solutions for the energies are
Z°R
en=——j v (13)

where R, = % ~ 13.6¢eV.

1.1.2 Bound-state solutions

Note that Eq. (1) has an infinite number of solutions for any given €. However, we are interested in
the bound state solutions, which have 1) — 0 as r — oo, and 1 normalisable (and thus ¢ everywhere
finite).

e (r) — 0as |r| - oo

e ¢(r) finite as |r| — 0 — and continuous

The boundary conditions become simpler in terms of P:
e P(r)—0as|r| - oo
e P(r) — 0 finite as |[r| — 0

More explicitly

PHYS4070. Atomic Physics 1: Hydrogenlike ions — 29 March 2021 B. M. Roberts

o Py(r) ~r*las|r| =0

o Py(r) ~ exp(—+/2¢|) finite as |r| — oo

Interestingly, these conditions hold for any atom, even multi-electron atoms. (The reason is that, for
multi-electron atoms we still have V(r) ~ —Z/r for small r, V(r) ~ —1/r for large r.)

For bound states. we have ¢ < 0. There are also unbound (continuum) states, which have € > 0,
and P(r) ~ sin(wr) for large r — though we will not be directly concerned with these. The full set
of solutions (including continuum) form a closed, complete, orthogonal set.

1.1.3 Matrix elements, expectation values

Typically, in any quantum mechanics problem, we are interested in calculating amplitudes (known
as matrix elements):

(alhlp) = / o ity AV. (14)

Here, we will consider only the simplest case: radial operators h = h(r) (sometimes called scalar
operators).
In this case, we have

/WLazamﬁ wnblbmb dV = </ Pnalah(r> Pnblb d?") </ }/l:ma}/lbmb dQ) (15)

- </ Pnalah(r) Pnblb dr) 5lalb(5mamb’ (]‘6)

Therefore, matrix elements for such operators only depend on radial P functions; and are non-zero
only transitions in which the angular quantum numbers do not change.
1.1.4 Atomic units

e Measure mass in units of m,

e Spin in units of A

47reoh

e Length in units of Bohr radius ag = =25
mee

e Charge in units of |e|, with 4mey = 1

e Energy in Hartree units, 2R, = 4()2 ~27.2eV

In these units, important constants take the values: m, = |e| = 4meg = h = ap = 1, and speed of
light ¢ = 1/a, where a = ;== ~ 1/137 is the fine structure constant.
In these units, the radial Schrodinger equation takes the form:

-1 02 [(l+ 1)h?
—_— —— | P(r)=¢P 1
V) + S P(r) = eP(r))
For Hydrogenlike ions, we again have:
Z
Vir)=—— (18)
r
and 72
= —— 19
3 53 (19)

PHYS4070. Atomic Physics 1: Hydrogenlike ions — 29 March 2021 B. M. Roberts

1.2 Numerical solution to radial equation
-1 02 [+ 1)h?
2 Or? 2r2

For hydrogenlike ions, this can be solved exactly. But for more general potentials, it cannot be. This

will be the starting point for more complex systems - only V' (r) will change. The same techniques

apply for general V' (r) potentials.
There are many methods available to solve the equation; here I will outline a few briefly.

+V(r)+ P(r) =eP(r), (20)

1.2.1 Linear multi-step method

Define 1P
o=, wn=(g): @)

dy Q(r)
dr (—2 (e-v -5 P(r)) (22)
= D(r)y(r), (23)

where D is the 2x2 matrix (that depends on r)

0 1
D= (_2 (6 v l(;:21)> 0) (24)

This has form of first-order ODE for y, but is a matrix equation.
Assume we know y(r), and want to find y(r + Ar). Since we know the derivative, we can project
forwards:

d
y(r+Ar) = y(r) + d_lr/*Ar’ (25)
or more precisely:
r+Ar
y(r+ Ar) = y(r) + / D(r")y(r') dr'. (26)

Using an (N + 1)-step numerical integration method (more next lecture), with Ar = Ndr, we
have

N
y(r +Ar) = y(r+ (N —1)ér) + or Z b;D(r + ior)y(r 4 idr). (27)
i=0
The b; are numerical integration “weights” — will be discussed next lecture. We move the ¢ = N term
to the left, and solve for y(r + Ar):

y(r + Ar) = [1 — 6rby D(r + Nor)] ™" <y(r + (N —1)dr) + or Z_ D(r +ior)y(r + iér).) (28)

Therefore, we can approximate y(r + Ar) so long as N previous values y(r), y(r + or), y(r + 20r),...
are known. Note that it involves finding the inverse of a 2x2 matrix.

e Very accurate

e Need N initial points: e.g., Use low-r expansion

4

PHYS4070. Atomic Physics 1: Hydrogenlike ions — 29 March 2021 B. M. Roberts

e Derivative operator depends on &

Since the derivative operator depends on €, we cannot solve for P and ¢ at the same time. Instead,
we have to guess €, and then solve the equation. Most likely, this guess will not be correct — this
means the solution will not have the correct boundary condition. Keep making small adjustments to
the guessed ¢ until the boundary conditions match — then we have successfully solved for the bound
state.

1.2.2 Diagonalise over basis
Use some (finite) set of basis functions {S;(r)}, and write:
P(r) =Y cS(r). (29)

In general, this is approximate, since the basis set is finite.
Sub this in to the radial Schrodinger equation:

HP =eP.

Using Dirac notation, this gives:

Z H|Sz)cz = 52 |Sj>Cj (30)
> (SklH|Si)e; = €Z<5k|5j>0j> (31)

)

where we multiplied on the left by (Sk| (and integrated). The result is just a matrix equation:

Z Hkici =& Z Sijj (32)
i J
— Hc=¢Se. (33)

This is a generalised eigenvalue matrix equation, which can be solved to yield a set of eigenvalues ¢,
and eigen vectors ¢. Each eigenvector is the set of ¢; expansion coefficients. Note that if the basis set
if orthonormal, the S matrix S;; = (5;]5;) is just the identity; however, this is not true in general.

In theory, any basis set will do (e.g., polynomials). In practice, since we can only use a finite
set, choosing a good basis set is important. Good choices are Gaussian basis states, B-splines, or
hydrogen-like wavefunctions.

1.2.3 Cast derivative operator to finite-element matrix (finite difference method)

e Not most accurate, but simplest

e Use for assignment!

We can numerically approximate the first- and second-order derivative as:

df fla+0/2) — f(z—5/2)

dr o (34)
d&’f fle—0)—2f(z) + fx +9)
dr? = 52 ' (35)

PHYS4070. Atomic Physics 1: Hydrogenlike ions — 29 March 2021 B. M. Roberts

If we choose a finite spacing {..., 1, xo, x3, , Tp, ...}, where each point is spaced § apart: x,,1 =
x, + 0, we may write the function f as a vector in this finite space:

21 -) |y [o) —27(@) + £z2)

T | 0O 1 -2 1 0 ... f(x9) =5 flx1) —2f(xe) + f(x3) | - (37)
Do f(x2) —2f(x3) + f(24)

Take a moment to ensure this makes sense — you have seen the same thing in the previous lectures.

Of course, we cannot compute a matrix of infinite size. Therefore, we must choose a finite
spacing d. Further, we must truncate the vector somewhere. We can do this by assuming f(x) =0
for x < xpin and x > Tpay. This is called the hard boundary condition.

In this case, we have a finite-dimensional matrix equation for the derivative:

-2 1 0 .. f(z1) —2f(z1) + f(z2)
a2y 1 I =2 1 0o ... f(x2) 1 f(x1) = 2f(za) + f(x3)
T2 o 1 =21 0 f(:$3) =5 f(iU2)—2f(:l‘3)+f($4) . (38)
0o 1 =2 f(@n) f(@n-1) —2f(zn)
We use n equally spaced points from x; to x,, so that 9,
. Tp — X1
0= 1 (39)
Using this, we may re-cast the radial Schrodiner equation into a matrix equation:
-1 I(1+1)
TDQ +V(r)+ o2 P =¢P, (40)

where D, in the n x n second-order derivative matrix. This is a simple eigenvalue problem, which
can be solved using usual techniques. Notice that, in order for V(r) x f(r) to work, V(r) (and any
other function of r) can be cast simply to a diagonal matrix:

V(ZEl) 0

V(3) . (41)

PHYS4070. Atomic Physics 1: Hydrogenlike ions — 29 March 2021 B. M. Roberts

Since the finite-element Hamiltonian matrix

I(1+1)
2r2

is real and symmetric, we can use the LAPACK routine DSYEV.

The output will be a set of n eigenvalues, and n eigenvectors. The eigenvalues are the energies,
and the eigenvectors are the wavefunctions (evaluated at the discrete z; points).

—1

Example 1.1: DSYEV Parameters. Documentation: http://www.netlib.org/lapack/explore-html/index.html.
int dsyev_(

char * jobz, // ’V’ = compute e. values and vectors. ’N’ = values only

char * uplo, // U’ = upper triangle of matrix is stored, ’L’ = lower

int * n, // dimension of matrix a

double * a, // c-style array for matrix a (ptr to array, pointer to al[O0])
// 0On output, a contains matrix of eigenvectors

int * 1lda, // For us, lda=n

double * w, // array of dimension n - will hold eigenvalues

double * work,// ’workspace’: array of dimension lwork

int * lwork, // dimension of workspace: ~ 6*n works well

int * info // error code: O=worked.

e Output eigenvalues are sorted, and eigenvectors are normalised to 1 (via inner product)

e Note: FORTRAN (language LAPACK is written in) uses column-major ordering to access 2D
arrays, wile ¢ and c++ use row-major. This means mli|[j] in c++ is m[j][i] in FORTRAN.. so
we often need to transpose the matrix before sending to LAPACK

— Our matrix is symmetric, so this doesn’t matter, except for ‘uplo’

— ‘uplo” ‘U’ means upper triangle in FORTRAN is stored — so lower in c¢++ [we can just
fill entire matrix though]

— For other LAPACK functions, you can often just tell them the matrix is a transpose, so
we don’t need to waste time transposing it ourselves

e Don’t forget ‘extern “C”’, and to declare the ‘dsyev_’ function, and the -llapack linker (compile)
flag (on macos, you may also need the -Iblas flag)

Note that due the the “hard boundary condition”, we have P(r) = 0 for r > .. However, the
correct boundary condition should be P(r,) ~ exp(—+/2[e|r,,). This is not a problem, so long as all
the wavefunctions we are directly interested in effectively go to zero well inside the maximum radius
rn. i.e., we must choose r, to be much larger than the typical radius of the electron orbitals we are
interested in. The expectation value for r scales as

2
(r) ~ %aB.

Note that by solving the equation in this way, we have generated a full set of wavefunctions
(eigenvectors). We are typically only directly interested in the first few. Of course, since we approxi-
mated the derivative using finite-elements, they are not exact, however, we have roughly a full set of
orthonormal wavefunctions. This is important, since we often need to use a complete set of states to
sum over in higher-orders of perturbation theory. Recall for a perturbative expansion H — H + d0h,
Y — Yy + 0, e = £ + de, we have:

50_571

http://www.netlib.org/lapack/explore-html/index.html

PHYS4070. Atomic Physics 1: Hydrogenlike ions — 29 March 2021 B. M. Roberts

1.3 Example: finite difference method: solve DE as matrix eigenvalue
problem

Here, I present some example code to interface with DSYEV. I first write a very simple class to store
the matrix; I use std::vector to store the data, and write a .at() function to read/write to the matrix
elements. Of course, you do not need to do it this way, but I present this just as an example. Then,
I show an example function for writing the derivative operator as a matrix.

Then, I show an example function, which uses the above matrix class, that interfaces with DSYEV
to find eigenvalues and eigenvectors. I also define a simple struct ‘Eigen’ that holds both the vector
of eigenvalues, and the matrix of eigenvectors.

This and more examples are on the blackboard site, under the week 6 workshop.

Example 1.2: Very basic class to hold square matrix (don’t forget header guards, excluded here for brevity).
// matrix.hpp
#include <vector>

class SquareMatrix {
public:
int dimension;
std::vector<double> vec; // store data in std::vector called ’vec’

// Constructore: Initialise a SquareMatrix of dimension*dimension, with Os
SquareMatrix (int in_dimension)
dimension(in_dimension), vec(in_dimension * in_dimension) {}

// Access the (i,j)th element by reference (so can edit)
double &at(int i, int j) { return vec.at(i * dimension + j); }

Example 1.3: We may write a simple function that creates second-order derivative operator matrix.
This can be easily modified to return the entire Hamiltonian operator as a matrix (in general, you’ll
need to pass more information to the function, like rp,;, and/or rpax).
SquareMatrix form_d2(int dimension, double dr) {

// Create empty square matrix, called d2

// Note: All elements set to zero by default, see SquareMatrix

SquareMatrix d2(dimension) ;

const auto dr2 = dr * dr;
// Fill all non-zero elements (matrix set all)
for (int i = 0; i < dimension; ++i) {

// Diagonal parts:

d2.at(i, i) = -2.0 / dr2;

// off-diagonal parts (note: careful not to go outside matrix bounds!)
if (i -1 >= 0) {
d2.at(i, i - 1) = 1.0 / dr2;
}
if (i + 1 < dimension) {
d2.at(i, i + 1) = 1.0 / dr2;
}
}
return d2;

}

PHYS4070. Atomic Physics 1: Hydrogenlike ions — 29 March 2021 B. M. Roberts

Example 1.4: Basic wrapper function that interfaces with DSYEV.

// eigensystems.hpp
#include "matrix.hpp"
// Very simple class; stores eigen values and eigen vectors (put in header file)
struct Eigen {

std::vector<double> values;

SquareMatrix vectors;

// constructor:

Eigen(int dimension) : values(dimension), vectors(dimension) {}

};

Eigen RealSymmetric(SquareMatrix matrix);

[/ —mm oo oo
// eigensystems.cpp

#include "eigensystems.hpp"

#include <iostream>

// dsyev_ is a symbol in the LAPACK library files

// Documentation: http://www.netlib.org/lapack/explore-html/index.html

extern "C" {

extern int dsyev_(char *, char *, int *, double *, int *, double *, double *,
int *, int *);

3

// Finds eigen values and eigen vectors of real, symmetric matrix
Eigen RealSymmetric(SquareMatrix matrix) {

// Create empty ’Eigen’ object, where we store the result

Eigen result(matrix.dimension);

// Data required by dsyev. See documentation for description of each option:
char jobz{’V’};

char uplo{’U’};

int dimension = matrix.dimension;

int lwork = 6 * dimension;

std::vector<double> work(lwork) ;

int info;

// calculate eigenvalues using the DSYEV lapack subroutine

dsyev_(&jobz, &uplo, &dimension, matrix.vec.data(), &dimension,

result.values.data(), work.data(), &lwork, &info);

// ’matrix’ contained the matrix on input, and contains a matrix of

// eigenvectors on output.. We copy these over into the ’result’ matrix (use
// move to avoid copy is optional)
result.vectors.vec = std::move(matrix.vec);

// check for errors
if (info !'= 0) {
std::cout << "D’oh! DSYEV returned error code " << info << ’\n’;

3

return result;

	Atomic physics – hydrogen-like ions
	Hydrogenlike ions: quick review
	Numerical solution to radial equation
	Example: finite difference method: solve DE as matrix eigenvalue problem

